Fact-checking can be done in crowd-sourcing mode by aggregating judgments provided by many workers. We propose a Bayesian approach to carry out this aggregation, considering the truthfulness of the statements as a latent variable that underlies the ratings. We illustrate this approach and test it against alternative methods using a publicly available dataset.

Bayesian ordinal regression for crowd-sourced fact-checking

Michele Lambardi di San Miniato;Michela Battauz;Ruggero Bellio;Paolo Vidoni
2024-01-01

Abstract

Fact-checking can be done in crowd-sourcing mode by aggregating judgments provided by many workers. We propose a Bayesian approach to carry out this aggregation, considering the truthfulness of the statements as a latent variable that underlies the ratings. We illustrate this approach and test it against alternative methods using a publicly available dataset.
2024
978-0-907552-44-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1286344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact