Ontologies are nowadays widely used to organize information across specific domains, being effective due to their hierarchical structure and the ability to explicitly represent relationships between concepts. Knowledge engineering, like compiling companies’ vast bodies of knowledge into these structures, however, still represents a time-consuming, largely manually performed process, esp. with significant amounts of knowledge often only recorded within unstructured text documents. Since the recently introduced Large Language Models (LLMs) excel on text summarization, this raises the question whether these could be exploited within dedicated knowledge fusion architectures to assist human knowledge engineers by automatically suggesting relevant classes, instances and relations extracted from textual corpora. We therefore propose a novel approach that leverages the taxonomic structure of a partially defined ontology to prompt LLMs for hierarchical knowledge organization. Unlike conventional methods that rely solely on static ontologies, our methodology dynamically generates prompts based on the ontology’s existing class taxonomy, prompting the LLM to generate responses that extract supplementary information from unstructured documents. It thus introduces the concept of using ontologies as scaffolds for guiding LLMs, in order to realize a mutual interplay between structured ontological knowledge and the soft fusion capabilities of LLMs. We evaluate our proposed algorithm on a real-world case study, performing a knowledge fusion task on heterogeneous technical documentation from a medical prosthesis manufacturer.

Leveraging LLMs for Knowledge Engineering from Technical Manuals: A Case Study in the Medical Prosthesis Manufacturing Domain

Incitti, Francesca
Primo
;
Snidaro, Lauro;Challapalli, Sri
2024-01-01

Abstract

Ontologies are nowadays widely used to organize information across specific domains, being effective due to their hierarchical structure and the ability to explicitly represent relationships between concepts. Knowledge engineering, like compiling companies’ vast bodies of knowledge into these structures, however, still represents a time-consuming, largely manually performed process, esp. with significant amounts of knowledge often only recorded within unstructured text documents. Since the recently introduced Large Language Models (LLMs) excel on text summarization, this raises the question whether these could be exploited within dedicated knowledge fusion architectures to assist human knowledge engineers by automatically suggesting relevant classes, instances and relations extracted from textual corpora. We therefore propose a novel approach that leverages the taxonomic structure of a partially defined ontology to prompt LLMs for hierarchical knowledge organization. Unlike conventional methods that rely solely on static ontologies, our methodology dynamically generates prompts based on the ontology’s existing class taxonomy, prompting the LLM to generate responses that extract supplementary information from unstructured documents. It thus introduces the concept of using ontologies as scaffolds for guiding LLMs, in order to realize a mutual interplay between structured ontological knowledge and the soft fusion capabilities of LLMs. We evaluate our proposed algorithm on a real-world case study, performing a knowledge fusion task on heterogeneous technical documentation from a medical prosthesis manufacturer.
File in questo prodotto:
File Dimensione Formato  
F24_CameraReady.pdf

non disponibili

Licenza: Non pubblico
Dimensione 464.21 kB
Formato Adobe PDF
464.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1292529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact