The sources of the astrophysical flux of high-energy neutrinos detected by IceCube are still largely unknown, but searches for temporal and spatial correlation between neutrinos and electromagnetic radiation are a promising approach in this endeavor. All major imaging atmospheric Cherenkov telescopes (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts issued by IceCube. These programs use several complementary neutrino alert streams. A publicly distributed alert stream is formed by individual high-energy neutrino candidate events of potentially astrophysical origin, such as IceCube-170922A (which could be linked to the flaring blazar TXS 0506+056). A privately distributed alert stream is formed by clusters of neutrino events in time and space around either pre-selected gamma-ray sources or anywhere in the sky. Here, we present joint searches for multi-wavelength emission associated with a set of IceCube alerts, both private and public, received through mid-January 2021. We will give an overview of the programs of the participating IACTs. We will showcase the various follow-up and data analysis strategies employed in response to the different alert types and various possible counterpart scenarios. Finally, we will present results from a combined analysis of the VHE gamma-ray observations obtained across all involved instruments, as well as relevant multi-wavelength data.

Joint searches by FACT, H.E.S.S., MAGIC and VERITAS for VHE gamma-ray emission associated with neutrinos detected by IceCube

Ansoldi S.;Burelli I.;De Lotto B.;Palatiello M.;
2024-01-01

Abstract

The sources of the astrophysical flux of high-energy neutrinos detected by IceCube are still largely unknown, but searches for temporal and spatial correlation between neutrinos and electromagnetic radiation are a promising approach in this endeavor. All major imaging atmospheric Cherenkov telescopes (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts issued by IceCube. These programs use several complementary neutrino alert streams. A publicly distributed alert stream is formed by individual high-energy neutrino candidate events of potentially astrophysical origin, such as IceCube-170922A (which could be linked to the flaring blazar TXS 0506+056). A privately distributed alert stream is formed by clusters of neutrino events in time and space around either pre-selected gamma-ray sources or anywhere in the sky. Here, we present joint searches for multi-wavelength emission associated with a set of IceCube alerts, both private and public, received through mid-January 2021. We will give an overview of the programs of the participating IACTs. We will showcase the various follow-up and data analysis strategies employed in response to the different alert types and various possible counterpart scenarios. Finally, we will present results from a combined analysis of the VHE gamma-ray observations obtained across all involved instruments, as well as relevant multi-wavelength data.
File in questo prodotto:
File Dimensione Formato  
ICRC2023_1501.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1302053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact