This paper presents AcegasApsAmga’s application of Large Language Models (LLMs) for energy forecasting, focusing on both short-term and long-term power consumption predictions. We detail the model adaptation process, including fine-tuning techniques specific to energy data, and the integration of temporal and contextual features using Retrieval Augmented Generation (RAG) to enhance forecasting accuracy.

Leveraging LLMs for Energy Forecasting: The AcegasApsAmga Case Study

Roitero K.;Della Mea V.;Mizzaro S.
2025-01-01

Abstract

This paper presents AcegasApsAmga’s application of Large Language Models (LLMs) for energy forecasting, focusing on both short-term and long-term power consumption predictions. We detail the model adaptation process, including fine-tuning techniques specific to energy data, and the integration of temporal and contextual features using Retrieval Augmented Generation (RAG) to enhance forecasting accuracy.
2025
9783031887192
9783031887208
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1308808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact