Most of the automated video-surveillance applications are based on background (BG) subtraction techniques, that aim at distinguishing moving objects in a static scene. These strategies strongly depend on the BG model, that has to be initialized and updated. A good initialization is crucial for the successive processing. In this paper, we propose a novel method for BG initialization and recovery, that merges interesting ideas coming from the video inpainting and the generative modelling subfields. The method takes as input a video sequence, in which several objects move in front of a stationary BG. Then, a statistical representation of the BG is iteratively built, discarding the moving objects in a fully automatic way. The method is based on the following hypotheses: (i) a portion of the BG, called sure BG, can be identified with high certainty by using only per-pixel reasoning and (ii) the remaining scene BG can be generated utilizing exemplars of the sure BG. The proposed algorithm is able to exploit these hypotheses in a principled and effective way.
Exemplar-based Background Model lnitialization
FUSIELLO, Andrea
2005-01-01
Abstract
Most of the automated video-surveillance applications are based on background (BG) subtraction techniques, that aim at distinguishing moving objects in a static scene. These strategies strongly depend on the BG model, that has to be initialized and updated. A good initialization is crucial for the successive processing. In this paper, we propose a novel method for BG initialization and recovery, that merges interesting ideas coming from the video inpainting and the generative modelling subfields. The method takes as input a video sequence, in which several objects move in front of a stationary BG. Then, a statistical representation of the BG is iteratively built, discarding the moving objects in a fully automatic way. The method is based on the following hypotheses: (i) a portion of the BG, called sure BG, can be identified with high certainty by using only per-pixel reasoning and (ii) the remaining scene BG can be generated utilizing exemplars of the sure BG. The proposed algorithm is able to exploit these hypotheses in a principled and effective way.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.