We present a bigraphical framework suited for modeling biological systems both at protein level and at membrane level. We characterize formally bigraphs corresponding to biologically meaningful systems, and bigraphic rewriting rules representing biologically admissible interactions. At the protein level, these bigraphic reactive systems correspond exactly to systems of kappa-calculus. Membrane-level interactions are represented by just two general rules, whose application can be triggered by protein-level interactions in a well-de\"ined and precise way. This framework can be used to compare and merge models at different abstraction levels; in particular, higher-level (e.g. mobility) activities can be given a formal biological justification in terms of low-level (i.e., protein) interactions. As examples, we formalize in our framework the vesiculation and the phagocytosis processes.

Bigraphical models for protein and membrane interactions

GROHMANN, Davide;MICULAN, Marino
2009-01-01

Abstract

We present a bigraphical framework suited for modeling biological systems both at protein level and at membrane level. We characterize formally bigraphs corresponding to biologically meaningful systems, and bigraphic rewriting rules representing biologically admissible interactions. At the protein level, these bigraphic reactive systems correspond exactly to systems of kappa-calculus. Membrane-level interactions are represented by just two general rules, whose application can be triggered by protein-level interactions in a well-de\"ined and precise way. This framework can be used to compare and merge models at different abstraction levels; in particular, higher-level (e.g. mobility) activities can be given a formal biological justification in terms of low-level (i.e., protein) interactions. As examples, we formalize in our framework the vesiculation and the phagocytosis processes.
File in questo prodotto:
File Dimensione Formato  
MeCBIC09a.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 403.51 kB
Formato Adobe PDF
403.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/713448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact