Using coalgebraic methods, we extend Conway’s original theory of games to include infinite games (hypergames). We take the view that a play which goes on forever is a draw, and hence rather than focussing on winning strategies, we focus on non-losing strategies. Infinite games are a fruitful metaphor for non-terminating processes, Conway’s sum of games being similar to shuffling. Hypergames have a rather interesting theory, already in the case of generalized Nim. The theory of hypergames generalizes Conway’s theory rather smoothly, but significantly. We indicate a number of intriguing directions for future work. We briefly compare infinite games with other notions of games used in computer science.
Conway Games, coalgebraically
HONSELL, Furio;LENISA, Marina
2009-01-01
Abstract
Using coalgebraic methods, we extend Conway’s original theory of games to include infinite games (hypergames). We take the view that a play which goes on forever is a draw, and hence rather than focussing on winning strategies, we focus on non-losing strategies. Infinite games are a fruitful metaphor for non-terminating processes, Conway’s sum of games being similar to shuffling. Hypergames have a rather interesting theory, already in the case of generalized Nim. The theory of hypergames generalizes Conway’s theory rather smoothly, but significantly. We indicate a number of intriguing directions for future work. We briefly compare infinite games with other notions of games used in computer science.File | Dimensione | Formato | |
---|---|---|---|
calco09.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
256.09 kB
Formato
Adobe PDF
|
256.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.