Gas turbine efficiency and power output are strongly dependent on the inlet air condition. Thus, several authors proposed the use of different inlet air cooling systems. Such systems include, as examples, spraying water in the inflow air stream or air cooling through a chiller during GT operation. In the latter case, it is possible to operate the chiller at night time, taking advantage of the remarkable price gap between peak and off-peak hours. A parametric analysis of such a system is presented, focusing on the effect of price gap, chiller and storage design parameters and climatic conditions on the optimal sizing of the plant. Both the gas turbine performance changes, due to the different inlet conditions, and thermal losses related to the storage system are taken into account. The economic return of the system is evaluated through the year-round integral of gas turbine fuel consumption and chiller electricity requirements, for given scenarios of electricity price tag, ambient temperature and humidity profile. For different boundary conditions (market constraints and climate) the optimal configurations are identified and discussed.

Parametric Analysis of Thermal Energy Storage for Gas Turbine Inlet Air Cooling - ASME Paper GT2007-27464

ARNULFI, Gianmario;CROCE, Giulio;
2007-01-01

Abstract

Gas turbine efficiency and power output are strongly dependent on the inlet air condition. Thus, several authors proposed the use of different inlet air cooling systems. Such systems include, as examples, spraying water in the inflow air stream or air cooling through a chiller during GT operation. In the latter case, it is possible to operate the chiller at night time, taking advantage of the remarkable price gap between peak and off-peak hours. A parametric analysis of such a system is presented, focusing on the effect of price gap, chiller and storage design parameters and climatic conditions on the optimal sizing of the plant. Both the gas turbine performance changes, due to the different inlet conditions, and thermal losses related to the storage system are taken into account. The economic return of the system is evaluated through the year-round integral of gas turbine fuel consumption and chiller electricity requirements, for given scenarios of electricity price tag, ambient temperature and humidity profile. For different boundary conditions (market constraints and climate) the optimal configurations are identified and discussed.
2007
0791837963
File in questo prodotto:
File Dimensione Formato  
nGT2007-27464.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 683.64 kB
Formato Adobe PDF
683.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/849735
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact