We present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever Ωε = εω × (0, ℓ) as ε goes to zero. By assuming ω simply connected and under suitable assumptions on the given loads, we show that the 3D problem converges in a variational sense to the classical dimensional models for extension, flexure and torsion of slender rods.

A simple variational derivation of slender rods theory

FREDDI, Lorenzo;
2007-01-01

Abstract

We present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever Ωε = εω × (0, ℓ) as ε goes to zero. By assuming ω simply connected and under suitable assumptions on the given loads, we show that the 3D problem converges in a variational sense to the classical dimensional models for extension, flexure and torsion of slender rods.
2007
9789812709387
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/850020
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact