The time-varying properties of volcanic tremor demand advanced techniques capable of analyzing changes in both time and frequency domains. Specifically, rapid data preprocessing techniques with the ability to distinguish signal from noise are especially valuable in analyzing the temporal, spatial, and spectral properties of these signals. To this end, we use the Discrete Wavelet Packet Transform and the Best Shift Basis algorithm to select an orthonormal basis for continuous volcanic tremor data, then apply a simple statistical test to eliminate frequency bands that primarily consist of Gaussian white noise. We then use the Maximal Overlap Discrete Wavelet Packet Transform to compute and analyze features in the detail coefficients of each "signal" band. Because MODWPT detail coefficients are equivalent to a time series convolved with a zero phase filter, we apply standard polarization and amplitude-based location techniques to each frequency band's detail coefficients to analyze possible source locations and mechanisms. To demonstrate the usefulness of these techniques, we present a sample analysis of data from Erta 'Ale volcano, Ethiopia, recorded on a temporary network in November 2003. Data were sampled at 100 Hz and the DWPT was computed with the LA(16) wavelet to a maximum level of j = 7. The optimal basis for this data set consists of 54 frequency bands, but only 9 contain meaningful "signal" energy. We identify two frequency bands whose locations suggest a distributed source; three frequency bands whose signals may come from the lava lake itself; three high-frequency bands of scattered energy; and one very high frequency band of non-Gaussian instrument noise. Finally, we discuss optimization efforts, computational efficiency, and the feasibility of using similar wavelet methods to preprocess data in real time or near real time.

Discrete Wavelet Packet Transforms and volcanic tremor: method and application to Erta 'Ale, Ethiopia

CARNIEL, Roberto;
2005-01-01

Abstract

The time-varying properties of volcanic tremor demand advanced techniques capable of analyzing changes in both time and frequency domains. Specifically, rapid data preprocessing techniques with the ability to distinguish signal from noise are especially valuable in analyzing the temporal, spatial, and spectral properties of these signals. To this end, we use the Discrete Wavelet Packet Transform and the Best Shift Basis algorithm to select an orthonormal basis for continuous volcanic tremor data, then apply a simple statistical test to eliminate frequency bands that primarily consist of Gaussian white noise. We then use the Maximal Overlap Discrete Wavelet Packet Transform to compute and analyze features in the detail coefficients of each "signal" band. Because MODWPT detail coefficients are equivalent to a time series convolved with a zero phase filter, we apply standard polarization and amplitude-based location techniques to each frequency band's detail coefficients to analyze possible source locations and mechanisms. To demonstrate the usefulness of these techniques, we present a sample analysis of data from Erta 'Ale volcano, Ethiopia, recorded on a temporary network in November 2003. Data were sampled at 100 Hz and the DWPT was computed with the LA(16) wavelet to a maximum level of j = 7. The optimal basis for this data set consists of 54 frequency bands, but only 9 contain meaningful "signal" energy. We identify two frequency bands whose locations suggest a distributed source; three frequency bands whose signals may come from the lava lake itself; three high-frequency bands of scattered energy; and one very high frequency band of non-Gaussian instrument noise. Finally, we discuss optimization efforts, computational efficiency, and the feasibility of using similar wavelet methods to preprocess data in real time or near real time.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/853294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact