We introduce a data structure, the Bundled Suffix Tree (BUST), that is a generalization of a Suffix Tree (ST). To build a BuST we use an alphabet ∑ together with a non-transitive relation ≈ among its letters. Following the path of a substring β within a BUST, constructed over a text α of length n, not only the positions of the exact occurrences of β in α are found (as in a ST), but also the positions of all the substrings β1, β2, β3... that are related with β via the relation ≈ among the characters of ∑, for example strings at a certain "distance" from β. A BuST contains O(n1+δ) additional nodes O(n1+δ) in probability, and is constructed in O(n1+δ) steps. In the worst case it contains O(n2) nodes.
BuST: Bundled Suffix Trees
POLICRITI, Alberto
2006-01-01
Abstract
We introduce a data structure, the Bundled Suffix Tree (BUST), that is a generalization of a Suffix Tree (ST). To build a BuST we use an alphabet ∑ together with a non-transitive relation ≈ among its letters. Following the path of a substring β within a BUST, constructed over a text α of length n, not only the positions of the exact occurrences of β in α are found (as in a ST), but also the positions of all the substrings β1, β2, β3... that are related with β via the relation ≈ among the characters of ∑, for example strings at a certain "distance" from β. A BuST contains O(n1+δ) additional nodes O(n1+δ) in probability, and is constructed in O(n1+δ) steps. In the worst case it contains O(n2) nodes.File | Dimensione | Formato | |
---|---|---|---|
BuST_TCS.pdf
non disponibili
Tipologia:
Abstract
Licenza:
Non pubblico
Dimensione
403.19 kB
Formato
Adobe PDF
|
403.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.