The paper presents a hybrid scheme for the solution of 2DH extended Boussinesq equations. The finite volume method is applied to the advective part of the equations, while dispersive and source terms are discretized by the finite difference technique. To validate the numerical model, a classical refraction-diffraction test is proposed. Special attention is devoted to verify the shock-capturing capabilities of the scheme: the model is applied to one- and two- dimensional runup test cases with good results, showing that no ad hoc treatment is required at the shoreline.

Finite Volume – Finite Difference scheme for the solution of 2D extended Boussinesq Equations

PETTI, Marco
2008-01-01

Abstract

The paper presents a hybrid scheme for the solution of 2DH extended Boussinesq equations. The finite volume method is applied to the advective part of the equations, while dispersive and source terms are discretized by the finite difference technique. To validate the numerical model, a classical refraction-diffraction test is proposed. Special attention is devoted to verify the shock-capturing capabilities of the scheme: the model is applied to one- and two- dimensional runup test cases with good results, showing that no ad hoc treatment is required at the shoreline.
File in questo prodotto:
File Dimensione Formato  
tonelli_petti_2008.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 7.42 MB
Formato Adobe PDF
7.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/859036
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact