The paper propses a new shape morphometry approach that combines advanced classification techniques with geometric features to identify morphological abnormalities on the brain surface. Our aim is to improve the classification accuracy in distinguishing between normal subjects and schizophrenic patients. The approach is inspired by natural language processing. Local brain surface geometric patterns are quantized to visual words, and their co-occurrences are encoded as visual topic. To do this, a generative model, the probabilistic. Latent Semantic Analysis is learned from quantized shape descriptors (visual words). Finally, we extract from the learned models a generative score, that is used as input of a Support Vector Machine (SVM), defining an hybrid generative/discriminative classification algorithm. An exhaustive experimental section is proposed on a dataset consisting of MRI scans from 64 patients and 60 control subjects. Promising results are reporting by observing accuracies up to 86.13%.

Brain morphometry by probabilistic latent semantic analysis

BRAMBILLA, Paolo
2010

Abstract

The paper propses a new shape morphometry approach that combines advanced classification techniques with geometric features to identify morphological abnormalities on the brain surface. Our aim is to improve the classification accuracy in distinguishing between normal subjects and schizophrenic patients. The approach is inspired by natural language processing. Local brain surface geometric patterns are quantized to visual words, and their co-occurrences are encoded as visual topic. To do this, a generative model, the probabilistic. Latent Semantic Analysis is learned from quantized shape descriptors (visual words). Finally, we extract from the learned models a generative score, that is used as input of a Support Vector Machine (SVM), defining an hybrid generative/discriminative classification algorithm. An exhaustive experimental section is proposed on a dataset consisting of MRI scans from 64 patients and 60 control subjects. Promising results are reporting by observing accuracies up to 86.13%.
File in questo prodotto:
File Dimensione Formato  
Castellani_ShapeAnalysis_MICCAI-10.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 608.28 kB
Formato Adobe PDF
608.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/860619
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 21
social impact