In the last decade the development of multirobot systems has come to maturation providing a lot of important results in many applicative domains. Many paradigms and approaches have been devised to this aim but one of them seems very promising for future applications: dense colony of robots where the large numbers of individuals is combined with a very small dimension for each of them. Here, the key point is a behavior-based paradigm embedded in the mobiligence framework as it appears particularly suitable to deal with the sensing activity where the physics of the interaction is made explicit to take advantage from it. Within this point of view the paper explores a design method to deal with sensor information which, avoiding any symbolic representation, is maintained at a somewhat physical level as a metaphor of the events observed in the environment. The idea of substratum is introduced as a convenient representation of the physical level currently in use. The key properties of the thermal metaphor are considered and implemented to trigger appropriately a colony of robots to execute a collective task. The temperature distribution, heat flux, diffusivity and dispersion are all discussed as different aspects of the stigmergy included as a key feature of the swarm which forces each individual to behave collectively.
Robot colony mobility in a thermodynamics Frame
D'ANGELO, Antonio;
2012-01-01
Abstract
In the last decade the development of multirobot systems has come to maturation providing a lot of important results in many applicative domains. Many paradigms and approaches have been devised to this aim but one of them seems very promising for future applications: dense colony of robots where the large numbers of individuals is combined with a very small dimension for each of them. Here, the key point is a behavior-based paradigm embedded in the mobiligence framework as it appears particularly suitable to deal with the sensing activity where the physics of the interaction is made explicit to take advantage from it. Within this point of view the paper explores a design method to deal with sensor information which, avoiding any symbolic representation, is maintained at a somewhat physical level as a metaphor of the events observed in the environment. The idea of substratum is introduced as a convenient representation of the physical level currently in use. The key properties of the thermal metaphor are considered and implemented to trigger appropriately a colony of robots to execute a collective task. The temperature distribution, heat flux, diffusivity and dispersion are all discussed as different aspects of the stigmergy included as a key feature of the swarm which forces each individual to behave collectively.File | Dimensione | Formato | |
---|---|---|---|
F1A-S.2.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
157.83 kB
Formato
Adobe PDF
|
157.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.