Hybrid automata are a natural framework for modeling and analyzing systems which exhibit a mixed discrete continuous behaviour. However, the standard operational semantics defined over such models implicitly assume perfect knowledge of the real systems and infinite precision measurements. Such assumptions are not only unrealistic, but often lead to the construction of misleading models. For these reasons we believe that it is necessary to introduce more flexible semantics able to manage with noise, partial information, and finite precision instruments. In particular, in this paper we integrate in a single framework based on approximated semantics different over and under-approximation techniques for hybrid automata. Our framework allows to both compare, mix, and generalize such techniques obtaining different approximated reachability algorithms.

Approximated Symbolic Computations over Hybrid Automata

DREOSSI, Tommaso;PIAZZA, Carla
2013

Abstract

Hybrid automata are a natural framework for modeling and analyzing systems which exhibit a mixed discrete continuous behaviour. However, the standard operational semantics defined over such models implicitly assume perfect knowledge of the real systems and infinite precision measurements. Such assumptions are not only unrealistic, but often lead to the construction of misleading models. For these reasons we believe that it is necessary to introduce more flexible semantics able to manage with noise, partial information, and finite precision instruments. In particular, in this paper we integrate in a single framework based on approximated semantics different over and under-approximation techniques for hybrid automata. Our framework allows to both compare, mix, and generalize such techniques obtaining different approximated reachability algorithms.
File in questo prodotto:
File Dimensione Formato  
1308.5334v1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 263.87 kB
Formato Adobe PDF
263.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/874853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact