We study the relation between Nominal Logic and the Theory of Contexts, two approaches for specifying and reasoning about datatypes with binders. We consider a natural-deduction style proof system for intuitionistic nominal logic, called NINL, inspired by a sequent proof system recently proposed by J. Cheney. We present a translation of terms, formulas and judgments of NINL, into terms and propositions of CIC, via a weak HOAS encoding. It turns out that the (translation of the) axioms and rules of NINL are derivable in CIC extended with the Theory of Contexts (CIC/ToC), and that in the latter we can prove also sequents which are not derivable in NINL. Thus, CIC/ToC can be seen as a strict extension of NINL. Copyright © 2005 ACM.
Translating Specifications from Nominal Logic to CIC with the Theory of Contexts
MICULAN, Marino;SCAGNETTO, Ivan;HONSELL, Furio
2005-01-01
Abstract
We study the relation between Nominal Logic and the Theory of Contexts, two approaches for specifying and reasoning about datatypes with binders. We consider a natural-deduction style proof system for intuitionistic nominal logic, called NINL, inspired by a sequent proof system recently proposed by J. Cheney. We present a translation of terms, formulas and judgments of NINL, into terms and propositions of CIC, via a weak HOAS encoding. It turns out that the (translation of the) axioms and rules of NINL are derivable in CIC extended with the Theory of Contexts (CIC/ToC), and that in the latter we can prove also sequents which are not derivable in NINL. Thus, CIC/ToC can be seen as a strict extension of NINL. Copyright © 2005 ACM.File | Dimensione | Formato | |
---|---|---|---|
p41-miculan.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
253.54 kB
Formato
Adobe PDF
|
253.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.