In this paper we demonstrate how Interval Analysis and Constraint Logic Programming can be used to obtain an accurate geometric model of a scene that rigorously takes into account the propagation of data errors and roundoff. Image points are represented as small rectangles: As a result, the output of the n-views triangulation is not a single point in space, but a polyhedron that contains all the possible solutions. Interval Analysis is used to bound this polyhedron with a box. Geometrical constraints such as orthogonality, parallelism, and coplanarity are subsequently enforced in order to reduce the size of those boxes, using Constraint Logic Programming. Experiments with real calibrated images illustrate the approach
Reconstruction with Interval Constraints Propagation
FUSIELLO, Andrea;DOVIER, Agostino
2006-01-01
Abstract
In this paper we demonstrate how Interval Analysis and Constraint Logic Programming can be used to obtain an accurate geometric model of a scene that rigorously takes into account the propagation of data errors and roundoff. Image points are represented as small rectangles: As a result, the output of the n-views triangulation is not a single point in space, but a polyhedron that contains all the possible solutions. Interval Analysis is used to bound this polyhedron with a box. Geometrical constraints such as orthogonality, parallelism, and coplanarity are subsequently enforced in order to reduce the size of those boxes, using Constraint Logic Programming. Experiments with real calibrated images illustrate the approachI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.