Filter models and (solutions of) recursive domain equations are two different ways of constructing lambda models. Many partial results have been shown about the equivalence between these two constructions (in some specific cases). This paper deepens the connection by showing that the equivalence can be shown in a general framework. We will introduce the class of disciplined intersection type theories and its four subclasses: natural split, lazy split, natural equated and lazy equated. We will prove that each class corresponds to a different recursive domain equation. For this result, we are extracting the essence of the specific proofs for the particular cases of intersection type theories and making one general construction that encompasses all of them. This general approach puts together all these results which may appear scattered and sometimes with incomplete proofs in the literature.
Recursive Domain Equations of Filter Models.
ALESSI, Fabio;
2008-01-01
Abstract
Filter models and (solutions of) recursive domain equations are two different ways of constructing lambda models. Many partial results have been shown about the equivalence between these two constructions (in some specific cases). This paper deepens the connection by showing that the equivalence can be shown in a general framework. We will introduce the class of disciplined intersection type theories and its four subclasses: natural split, lazy split, natural equated and lazy equated. We will prove that each class corresponds to a different recursive domain equation. For this result, we are extracting the essence of the specific proofs for the particular cases of intersection type theories and making one general construction that encompasses all of them. This general approach puts together all these results which may appear scattered and sometimes with incomplete proofs in the literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.