The invariance of the meaning of a λ-term by reduction/expansion w.r.t. the considered computational rules is one of the minimal requirements for a λ-model. Being the intersection type systems a general framework for the study of semantic domains for the Λ-calculus, the present paper provides a characterisation of "meaning invariance" in terms of characterisation results for intersection type systems enabling typing invariance of terms w.r.t. various notions of reduction/expansion, like β, η and a number of relevant restrictions of theirs

Intersection Types and Computational Rules

ALESSI, Fabio;
2003

Abstract

The invariance of the meaning of a λ-term by reduction/expansion w.r.t. the considered computational rules is one of the minimal requirements for a λ-model. Being the intersection type systems a general framework for the study of semantic domains for the Λ-calculus, the present paper provides a characterisation of "meaning invariance" in terms of characterisation results for intersection type systems enabling typing invariance of terms w.r.t. various notions of reduction/expansion, like β, η and a number of relevant restrictions of theirs
File in questo prodotto:
File Dimensione Formato  
ABD-IT&CompR.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Non pubblico
Dimensione 456.48 kB
Formato Adobe PDF
456.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/902564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact