Integral formulations, suitable for the numerical solution of quasi-magnetostatic (eddy currents) problems in large and complex 3D domains, require specific post-processing tools to compute the effects of known current density distributions over elementary geometric entities (both mesh elements and field sources). The aim of this paper is to present a fast and robust implementation on a GPU architecture of an accurate algorithm for the computation of magnetic field and vector potential components.
Fast and efficient algorithms for computational electromagnetics on GPU architecture
PASSAROTTO, MAURO
2016-01-01
Abstract
Integral formulations, suitable for the numerical solution of quasi-magnetostatic (eddy currents) problems in large and complex 3D domains, require specific post-processing tools to compute the effects of known current density distributions over elementary geometric entities (both mesh elements and field sources). The aim of this paper is to present a fast and robust implementation on a GPU architecture of an accurate algorithm for the computation of magnetic field and vector potential components.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.