In the last two decades, homogeneous gold(I) catalysis has become a useful tool for chemical transformation of organic compounds, and great efforts have been made in the understandings of the catalytic cycle and other variables like structure of the catalyst, nature of the ligand, effect of the additives, etc. Even if a large number of information on the ligand effects is present in the literature on homogeneous gold catalysis, the engineering of new L-Au-X catalysts and reactions is still based on trial and error, sometimes with an unpredictable outcome. Recently, it appears that the anion has an active participation in each single step of the catalysis and this depends both on its nature (co-ordination ability and basicity) and position. Surely, the effect of the anion also depends on the type of reaction as well as the RDS of the catalytic cycle. In this thesis, thanks to a complete rationalization of the counterion effect, resulting from experimental and theoretical studies, highly efficient sustainable methodologies have been developed. Thus, reactions can be conveniently run at room or mild temperature, using neoteric solvents or working in solvent-, silver-, and acid-free conditions. The main reactions studied were the hydration and alkoxylation of alkynes, that generally require large amounts of acidic additives and/or high temperature. Here is reported for the first time an innovative and green method for carrying out these reactions. Lastly, this work demonstrates that the interplay between the ligand, the counterion, the additive and the solvent is crucial in order to obtain good results in terms of efficiency of the reaction.
Negli ultimi due decenni, la catalisi omogenea d’oro(I) è diventata uno strumento utile per la trasformazione chimica di composti organici. Sono stati fatti grandi sforzi per la comprensione del ciclo catalitico e di altre variabili come la struttura del catalizzatore, la natura del legante, l’effetto degli additivi, ecc. Anche se in letteratura sono presenti molte informazioni sulla catalisi omogenea d’oro riguardo gli effetti dei leganti, l'ingegnerizzazione di nuovi catalizzatori tipo L-Au-X e lo studio sulle reazioni, è ancora basata su “trial and error” con un risultati a volte imprevedibili. Recentemente, è stato scoperto che l'anione abbia una partecipazione attiva in ogni singolo passo della catalisi e questo dipende sia dalla sua natura (capacità di coordinazione e basicità) sia dalla sua posizione. Sicuramente, l'effetto dell'anione dipende anche dal tipo di reazione e dall'RDS del ciclo catalitico. In questa tesi, grazie a una completa razionalizzazione dell'effetto dell’anione, derivante da studi sperimentali e teorici, sono state sviluppate metodologie sostenibili altamente efficienti. Pertanto, le reazioni possono essere eseguite convenientemente a temperatura ambiente, usando solventi neoterici o lavorando in condizioni “neat”, in assenza si sali d’argento e di acidi. Le principali reazioni studiate sono state l'idratazione e l'alcossilazione degli alchini, che generalmente richiedono grandi quantità di additivi acidi e/o alte temperature. Qui viene riportato per la prima volta un metodo innovativo e “green” per eseguire queste reazioni. Infine, questo lavoro dimostra che l'interazione tra il legante, l’anione, l'additivo e il solvente è cruciale per ottenere buoni risultati in termini di efficienza della reazione.
Sviluppo di metodolgie sotenibili per la catalisi omogenea di oro / Mattia Gatto , 2019 Mar 25. 31. ciclo, Anno Accademico 2017/2018.
Sviluppo di metodolgie sotenibili per la catalisi omogenea di oro
GATTO, MATTIA
2019-03-25
Abstract
In the last two decades, homogeneous gold(I) catalysis has become a useful tool for chemical transformation of organic compounds, and great efforts have been made in the understandings of the catalytic cycle and other variables like structure of the catalyst, nature of the ligand, effect of the additives, etc. Even if a large number of information on the ligand effects is present in the literature on homogeneous gold catalysis, the engineering of new L-Au-X catalysts and reactions is still based on trial and error, sometimes with an unpredictable outcome. Recently, it appears that the anion has an active participation in each single step of the catalysis and this depends both on its nature (co-ordination ability and basicity) and position. Surely, the effect of the anion also depends on the type of reaction as well as the RDS of the catalytic cycle. In this thesis, thanks to a complete rationalization of the counterion effect, resulting from experimental and theoretical studies, highly efficient sustainable methodologies have been developed. Thus, reactions can be conveniently run at room or mild temperature, using neoteric solvents or working in solvent-, silver-, and acid-free conditions. The main reactions studied were the hydration and alkoxylation of alkynes, that generally require large amounts of acidic additives and/or high temperature. Here is reported for the first time an innovative and green method for carrying out these reactions. Lastly, this work demonstrates that the interplay between the ligand, the counterion, the additive and the solvent is crucial in order to obtain good results in terms of efficiency of the reaction.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Dottorato_XXXIciclo_Mattia_Gatto.pdf
accesso aperto
Descrizione: tesi di dottorato
Licenza:
Creative commons
Dimensione
3.88 MB
Formato
Adobe PDF
|
3.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.