The process of particle capture and trapping by large deformable drops in turbulent channel flow are investigated in this thesis using an Eulerian-Lagrangian approach specifically developed for this three-phase flow. The flow field in the carrier fluid and inside the droplets is obtained from Direct Numerical Simulation of the Navier-Stokes equations; the drop interface dynamics are provided by a Phase Field Model; and par- ticle trajectories are calculated via Lagrangian tracking. Drops have the same density and viscosity of the carrier fluid in order to mimic a liquid-liquid dispersion of water and low-viscosity oil. Particles are modelled as neutrally- buoyant, sub-Kolmogorov spheres that interact with each other through collisions (excluded-volume interaction). Simulation results allow a detailed characterization of the particle dynamics during the interface capture and trapping stages. Particle capture is driven by the capillary forces of the interface in combination with near-interface turbulent motions: Particles are transported towards the interface by jet-like turbulent motions and, once close enough, are captured by interfacial forces in regions of positive surface velocity diver- gence. These regions appear to be well correlated with high-enstrophy flow topologies that contribute to enstrophy production via vortex compression or stretching. Upon capture, particles sample preferentially regions of positive surface velocity divergence, which correlate with jet-like fluid motions directed towards the interface. At later times, however, particles are observed to move from these regions under the action of the tangential stresses to the areas where the surface divergence vanishes and form the two-dimensional cluster. long- term trapping regions correlate well with the surface area characterized by higher-than-mean curvature. This finding is important since the presence of tiny particles at the interface is known to affect locally the surface tension, particularly in the presence of concentration gradi- ents: present results suggest that particle-induced modifications of the surface tension should be stronger where the curvature of the interface is higher.

Particle Capture and Pattern Evolution on Big Drops in Three-phase Turbulence / Arash Hajisharifi , 2021 Jul 07. 33. ciclo, Anno Accademico 2019/2020.

Particle Capture and Pattern Evolution on Big Drops in Three-phase Turbulence

HAJISHARIFI, ARASH
2021-07-07

Abstract

The process of particle capture and trapping by large deformable drops in turbulent channel flow are investigated in this thesis using an Eulerian-Lagrangian approach specifically developed for this three-phase flow. The flow field in the carrier fluid and inside the droplets is obtained from Direct Numerical Simulation of the Navier-Stokes equations; the drop interface dynamics are provided by a Phase Field Model; and par- ticle trajectories are calculated via Lagrangian tracking. Drops have the same density and viscosity of the carrier fluid in order to mimic a liquid-liquid dispersion of water and low-viscosity oil. Particles are modelled as neutrally- buoyant, sub-Kolmogorov spheres that interact with each other through collisions (excluded-volume interaction). Simulation results allow a detailed characterization of the particle dynamics during the interface capture and trapping stages. Particle capture is driven by the capillary forces of the interface in combination with near-interface turbulent motions: Particles are transported towards the interface by jet-like turbulent motions and, once close enough, are captured by interfacial forces in regions of positive surface velocity diver- gence. These regions appear to be well correlated with high-enstrophy flow topologies that contribute to enstrophy production via vortex compression or stretching. Upon capture, particles sample preferentially regions of positive surface velocity divergence, which correlate with jet-like fluid motions directed towards the interface. At later times, however, particles are observed to move from these regions under the action of the tangential stresses to the areas where the surface divergence vanishes and form the two-dimensional cluster. long- term trapping regions correlate well with the surface area characterized by higher-than-mean curvature. This finding is important since the presence of tiny particles at the interface is known to affect locally the surface tension, particularly in the presence of concentration gradi- ents: present results suggest that particle-induced modifications of the surface tension should be stronger where the curvature of the interface is higher.
7-lug-2021
Three-phase flow; Turbulence; particle-droplet; Interfacial trapping;
Particle Capture and Pattern Evolution on Big Drops in Three-phase Turbulence / Arash Hajisharifi , 2021 Jul 07. 33. ciclo, Anno Accademico 2019/2020.
File in questo prodotto:
File Dimensione Formato  
PhDThesis_Arash_Hajisharifi.pdf

accesso aperto

Descrizione: Particle Capture and Pattern Evolution on Big Drops in Three-phase Turbulence
Licenza: Creative commons
Dimensione 40.72 MB
Formato Adobe PDF
40.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1208573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact