We present a music interface implementing a bowed string. The bow is realised using a commercially available haptic device, consisting of a stylus attached to a robotic arm. While playing the virtual strings with the stylus reproducing the bow, users feel both the elastic force from the strings and the friction resulting from the interaction with their surfaces. The audio-haptic feedback is obtained by a physical model: four stiff strings are simulated using a finite difference time domain method, modelled as 1-Delements in the virtual 3-D space. The bow is simply modelled as a rigid cylinder that can move free in this space, and interact with the strings. Finally, the frictional interaction between such elements is modelled by a nonlinear friction model capable of reproducing the characteristic stick-slip phenomenon observed during string bowing. Moreover, the model can be dynamically controlled in one parameter so as to become more sticky or slippery. By turning on and off the frictional feedback, users can appreciate the significance of this interaction. A real-time visualisation of the bowed strings complements the audio-haptic display

Bowing virtual strings with realistic haptic feedback

Federico Fontana;
2022-01-01

Abstract

We present a music interface implementing a bowed string. The bow is realised using a commercially available haptic device, consisting of a stylus attached to a robotic arm. While playing the virtual strings with the stylus reproducing the bow, users feel both the elastic force from the strings and the friction resulting from the interaction with their surfaces. The audio-haptic feedback is obtained by a physical model: four stiff strings are simulated using a finite difference time domain method, modelled as 1-Delements in the virtual 3-D space. The bow is simply modelled as a rigid cylinder that can move free in this space, and interact with the strings. Finally, the frictional interaction between such elements is modelled by a nonlinear friction model capable of reproducing the characteristic stick-slip phenomenon observed during string bowing. Moreover, the model can be dynamically controlled in one parameter so as to become more sticky or slippery. By turning on and off the frictional feedback, users can appreciate the significance of this interaction. A real-time visualisation of the bowed strings complements the audio-haptic display
File in questo prodotto:
File Dimensione Formato  
ICA_2022_Paper.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1238804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact