Portfolio selection is a relevant problem arising in finance and economics. While its basic formulations can be efficiently solved through linear or quadratic programming, its more practical and realistic variants, which include various kinds of constraints and objectives, have in many cases to be tackled by approximate algorithms. In this work, we present a hybrid technique that combines a local search, as master solver, with a quadratic programming procedure, as slave solver. Experimental results show that the approach is very promising and achieves results comparable with, or superior to, the state of the art solvers.
Hybrid local search for constrained financial portfolio selection problems
DI GASPERO, Luca;SCHAERF, Andrea
2007-01-01
Abstract
Portfolio selection is a relevant problem arising in finance and economics. While its basic formulations can be efficiently solved through linear or quadratic programming, its more practical and realistic variants, which include various kinds of constraints and objectives, have in many cases to be tackled by approximate algorithms. In this work, we present a hybrid technique that combines a local search, as master solver, with a quadratic programming procedure, as slave solver. Experimental results show that the approach is very promising and achieves results comparable with, or superior to, the state of the art solvers.File | Dimensione | Formato | |
---|---|---|---|
cpaior2007.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
558.7 kB
Formato
Adobe PDF
|
558.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.