We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous and isotropic material. The Lame' moduli of the inclusion are constant and different from those of the surrounding material. Under mild a-priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame' system and a refined asymptotic analysis of the fundamental solution of the Lame' system in presence of an inclusion which shows surprising features.

Stable determination of an inclusion in an elastic body by boundary measurements

MORASSI, Antonino;
2014-01-01

Abstract

We consider the inverse problem of identifying an unknown inclusion contained in an elastic body by the Dirichlet-to-Neumann map. The body is made by linearly elastic, homogeneous and isotropic material. The Lame' moduli of the inclusion are constant and different from those of the surrounding material. Under mild a-priori regularity assumptions on the unknown defect, we establish a logarithmic stability estimate. Main tools are propagation of smallness arguments based on three-spheres inequality for solutions to the Lame' system and a refined asymptotic analysis of the fundamental solution of the Lame' system in presence of an inclusion which shows surprising features.
File in questo prodotto:
File Dimensione Formato  
ADiCMR_SIMA_2014_46_2014_2692-2729.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 552.02 kB
Formato Adobe PDF
552.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1036565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact