We consider the inverse problem of determining the Lame' moduli for a piecewise constant elasticity tensor $CC= sum_{j} CC_j chi_{D_j}$, where ${D_j}$ is a known finite partition of the body $Omega$, from the Dirichlet-to-Neumann map. We prove that Lipschitz stability estimates can be derived under $C^{1,alpha}$ regularity assumptions on the interfaces.
Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non flat interfaces
MORASSI, Antonino;
2014-01-01
Abstract
We consider the inverse problem of determining the Lame' moduli for a piecewise constant elasticity tensor $CC= sum_{j} CC_j chi_{D_j}$, where ${D_j}$ is a known finite partition of the body $Omega$, from the Dirichlet-to-Neumann map. We prove that Lipschitz stability estimates can be derived under $C^{1,alpha}$ regularity assumptions on the interfaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BFMRV_IP_2014.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
297.64 kB
Formato
Adobe PDF
|
297.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.