Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES) pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC). A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A). Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.
Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics.
BELTRAMI, Antonio Paolo;CESSELLI, Daniela;BELTRAMI, Carlo Alberto;CURCIO, Francesco
2012-01-01
Abstract
Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES) pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC). A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A). Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.File | Dimensione | Formato | |
---|---|---|---|
journal.pone.0041774.PDF
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.