We prove the existence of complex dynamics for a generalized pendulum type equation with variable length. The solutions we find switch from an oscillatory behavior around the stable vertical position to a rotational type behavior crossing the unstable position with positive or negative velocity following any prescribed two-sided sequence of symbols. Moreover, to any periodic sequence of symbols corresponds a periodic solution of the equation. The proof is based on a topological approach and the results are robust with respect to small perturbations. In particular a small friction term can be added to the equation. © 2013 Springer Science+Business Media New York.

Complex Dynamics in Pendulum-Type Equations with Variable Length

ZANOLIN, Fabio
2013-01-01

Abstract

We prove the existence of complex dynamics for a generalized pendulum type equation with variable length. The solutions we find switch from an oscillatory behavior around the stable vertical position to a rotational type behavior crossing the unstable position with positive or negative velocity following any prescribed two-sided sequence of symbols. Moreover, to any periodic sequence of symbols corresponds a periodic solution of the equation. The proof is based on a topological approach and the results are robust with respect to small perturbations. In particular a small friction term can be added to the equation. © 2013 Springer Science+Business Media New York.
File in questo prodotto:
File Dimensione Formato  
10.1007_s10884-013-9295-4.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 666.51 kB
Formato Adobe PDF
666.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1040387
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact