We prove some multiplicity results for a class of one-dimensional nonlinear Schrödinger-type equations of the form x″ + 2kx - 2g(t)x3 = 0, where k gt; 0 and the weight g(t) is a positive stepwise function. Instead of the cubic term, more general nonlinearities can be considered as well. © 2013 Ellero and Zanolin.
Homoclinic and heteroclinic solutions for a class of second-order non-autonomous ordinary differential equations: Multiplicity results for stepwise potentials
ZANOLIN, Fabio
2013-01-01
Abstract
We prove some multiplicity results for a class of one-dimensional nonlinear Schrödinger-type equations of the form x″ + 2kx - 2g(t)x3 = 0, where k gt; 0 and the weight g(t) is a positive stepwise function. Instead of the cubic term, more general nonlinearities can be considered as well. © 2013 Ellero and Zanolin.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1687-2770-2013-167.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
852.16 kB
Formato
Adobe PDF
|
852.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.