Traditional situational awareness services in disaster management are mainly focused on the institutional warning response and not fully exploit the active participation of citizens involved. This paper presents an advanced system for emergency management (ASyEM) which fuses the potentiality offered by mobile social data and bottom-up communication with smart sensors. The proposed architecture model is organized into four different layers: (1) sensor, (2) local transmission, (3) network and (4) management. ASyEM is able to capture and aggregate two different kind of data: (a) user generated content produced by citizens during or immediately after the disaster and shared online through socio-mobile applications and (b) data acquired by smart sensors distributed on the environment (i.e., intelligent cameras, microphones, acoustic arrays, etc.). Data are selected, analysed, processed and integrated in order to increase the reliability and the efficiency of whole situational awareness services, localize the critical areas and obtain in this way some relevant information for emergency response and completion of search and rescue operations.
Situational aware services in smart environments: socio-mobile and sensor data fusion for emergency response to disasters
FORESTI, Gian Luca;FARINOSI, Manuela;VERNIER, Marco
2015-01-01
Abstract
Traditional situational awareness services in disaster management are mainly focused on the institutional warning response and not fully exploit the active participation of citizens involved. This paper presents an advanced system for emergency management (ASyEM) which fuses the potentiality offered by mobile social data and bottom-up communication with smart sensors. The proposed architecture model is organized into four different layers: (1) sensor, (2) local transmission, (3) network and (4) management. ASyEM is able to capture and aggregate two different kind of data: (a) user generated content produced by citizens during or immediately after the disaster and shared online through socio-mobile applications and (b) data acquired by smart sensors distributed on the environment (i.e., intelligent cameras, microphones, acoustic arrays, etc.). Data are selected, analysed, processed and integrated in order to increase the reliability and the efficiency of whole situational awareness services, localize the critical areas and obtain in this way some relevant information for emergency response and completion of search and rescue operations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.