Telomeres consist of DNA tandem repeats that recruit the multiprotein complex shelterin to build a chromatin structure that protects chromosome ends. Although cancer formation is linked to alterations in telomere homeostasis, there is little understanding of how shelterin function is limited in cancer cells. Using a small-scale screening approach, we identified miR-155 as a key regulator in breast cancer cell expression of the shelterin component TERF1 (TRF1). miR-155 targeted a conserved sequence motif in the 3'UTR of TRF1, resulting in its translational repression. miR-155 was upregulated commonly in breast cancer specimens, as associated with reduced TRF1 protein expression, metastasis-free survival, and relapse-free survival in estrogen receptor-positive cases. Modulating miR-155 expression in cells altered TRF1 levels and TRF1 abundance at telomeres. Compromising TRF1 expression by elevating miR-155 increased telomere fragility and altered the structure of metaphase chromosomes. In contrast, reducing miR-155 levels improved telomere function and genomic stability. These results implied that miR-155 upregulation antagonizes telomere integrity in breast cancer cells, increasing genomic instability linked to poor clinical outcome in estrogen receptor-positive disease. Our work argued that miRNA-dependent regulation of shelterin function has a clinically significant impact on telomere function, suggesting the existence of "telo-miRNAs" that have an impact on cancer and aging.

miR-155 drives telomere fragility in human breast cancer by targeting TRF1

BENETTI, Roberta;SCHNEIDER, Claudio;
2014-01-01

Abstract

Telomeres consist of DNA tandem repeats that recruit the multiprotein complex shelterin to build a chromatin structure that protects chromosome ends. Although cancer formation is linked to alterations in telomere homeostasis, there is little understanding of how shelterin function is limited in cancer cells. Using a small-scale screening approach, we identified miR-155 as a key regulator in breast cancer cell expression of the shelterin component TERF1 (TRF1). miR-155 targeted a conserved sequence motif in the 3'UTR of TRF1, resulting in its translational repression. miR-155 was upregulated commonly in breast cancer specimens, as associated with reduced TRF1 protein expression, metastasis-free survival, and relapse-free survival in estrogen receptor-positive cases. Modulating miR-155 expression in cells altered TRF1 levels and TRF1 abundance at telomeres. Compromising TRF1 expression by elevating miR-155 increased telomere fragility and altered the structure of metaphase chromosomes. In contrast, reducing miR-155 levels improved telomere function and genomic stability. These results implied that miR-155 upregulation antagonizes telomere integrity in breast cancer cells, increasing genomic instability linked to poor clinical outcome in estrogen receptor-positive disease. Our work argued that miRNA-dependent regulation of shelterin function has a clinically significant impact on telomere function, suggesting the existence of "telo-miRNAs" that have an impact on cancer and aging.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1064095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 97
social impact