High temperature enhances the oleic acid content in the oil of normal cultivars but conflicting results are reported on temperature effects on oleic acid content in HO cultivars: either no effect or an increase in oleic acid content with temperature. To investigate the effects of temperature on HO genotypes under natural field conditions, a three-year field trial was conducted using two sowing dates and three HO genotypes (two inbred lines and one hybrid). To compare our results with previous works, growing degree-days (GDD) were computed (base temperature ¼6°C). GDD accumulated during the “flowering – 25 days after flowering” period influenced fatty acid composition of seed. Oleic and linoleic acid contents were affected by accumulated GDD in two HO genotypes (one inbred line and the hybrid). There was an increase of about 3% in oleic acid content as response to more high GDD accumulated. Their content was not modified by GDD in the other inbred line. There was a genotype environment interaction that we suppose depending on modifier genes. These genetic factors affected oleic acid content. This indicated the importance of breeding targeted to select hybrids with a stable oleic acid content and higher than 90%. Saturated fatty acids (palmitic and stearic) were also influenced by temperature, and there was genetic variability among genotypes.

Variability of seed fatty acid composition to growing degree-days in high oleic acid sunflower genotypes

VANNOZZI, Gian Paolo
2015-01-01

Abstract

High temperature enhances the oleic acid content in the oil of normal cultivars but conflicting results are reported on temperature effects on oleic acid content in HO cultivars: either no effect or an increase in oleic acid content with temperature. To investigate the effects of temperature on HO genotypes under natural field conditions, a three-year field trial was conducted using two sowing dates and three HO genotypes (two inbred lines and one hybrid). To compare our results with previous works, growing degree-days (GDD) were computed (base temperature ¼6°C). GDD accumulated during the “flowering – 25 days after flowering” period influenced fatty acid composition of seed. Oleic and linoleic acid contents were affected by accumulated GDD in two HO genotypes (one inbred line and the hybrid). There was an increase of about 3% in oleic acid content as response to more high GDD accumulated. Their content was not modified by GDD in the other inbred line. There was a genotype environment interaction that we suppose depending on modifier genes. These genetic factors affected oleic acid content. This indicated the importance of breeding targeted to select hybrids with a stable oleic acid content and higher than 90%. Saturated fatty acids (palmitic and stearic) were also influenced by temperature, and there was genetic variability among genotypes.
File in questo prodotto:
File Dimensione Formato  
Variability of Seed Fatty Acid Composition to Growing Degree-Days in High Oleic Acid Sunflower Genotypes Helia.htm

solo utenti autorizzati

Tipologia: Documento in Post-print
Dimensione 188.48 kB
Formato HTML
188.48 kB HTML   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1067773
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact