Person re-identification in a non-overlapping multicamera scenario is an open challenge in computer vision because of the large changes in appearances caused by variations in viewing angle, lighting, background clutter, and occlusion over multiple cameras. As a result of these variations, features describing the same person get transformed between cameras. To model the transformation of features, the feature space is nonlinearly warped to get the "warp functions". The warp functions between two instances of the same target form the set of feasible warp functions while those between instances of different targets form the set of infeasible warp functions. In this work, we build upon the observation that feature transformations between cameras lie in a nonlinear function space of all possible feature transformations. The space consisting of all the feasible and infeasible warp functions is the warp function space (WFS). We propose to learn a discriminating surface separating these two sets of warp functions in the WFS and to re-identify persons by classifying a test warp function as feasible or infeasible. Towards this objective, a Random Forest (RF) classifier is employed which effectively chooses the warp function components according to their importance in separating the feasible and the infeasible warp functions in the WFS. Extensive experiments on five datasets are carried out to show the superior performance of the proposed approach over state-of-the-art person re-identification methods. We show that our approach outperforms all other methods when large illumination variations are considered. At the same time it has been shown that our method reaches the best average performance over multiple combinations of the datasets, thus, showing that our method is not designed only to address a specific challenge posed by a particular dataset. © 2014 IEEE.
Re-identification in the function space of feature warps
MARTINEL, Niki;MICHELONI, Christian;
2015-01-01
Abstract
Person re-identification in a non-overlapping multicamera scenario is an open challenge in computer vision because of the large changes in appearances caused by variations in viewing angle, lighting, background clutter, and occlusion over multiple cameras. As a result of these variations, features describing the same person get transformed between cameras. To model the transformation of features, the feature space is nonlinearly warped to get the "warp functions". The warp functions between two instances of the same target form the set of feasible warp functions while those between instances of different targets form the set of infeasible warp functions. In this work, we build upon the observation that feature transformations between cameras lie in a nonlinear function space of all possible feature transformations. The space consisting of all the feasible and infeasible warp functions is the warp function space (WFS). We propose to learn a discriminating surface separating these two sets of warp functions in the WFS and to re-identify persons by classifying a test warp function as feasible or infeasible. Towards this objective, a Random Forest (RF) classifier is employed which effectively chooses the warp function components according to their importance in separating the feasible and the infeasible warp functions in the WFS. Extensive experiments on five datasets are carried out to show the superior performance of the proposed approach over state-of-the-art person re-identification methods. We show that our approach outperforms all other methods when large illumination variations are considered. At the same time it has been shown that our method reaches the best average performance over multiple combinations of the datasets, thus, showing that our method is not designed only to address a specific challenge posed by a particular dataset. © 2014 IEEE.File | Dimensione | Formato | |
---|---|---|---|
PAMI2013.pdf
non disponibili
Descrizione: Articolo Principale
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
8.2 MB
Formato
Adobe PDF
|
8.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PAMI2013_supplementary.pdf
non disponibili
Descrizione: Materiale Aggiuntivo
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
633.68 kB
Formato
Adobe PDF
|
633.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.