We study the existence of nontrivial, nonnegative periodic solutions for systems of singular-degenerate parabolic equations with nonlocal terms and satisfying Dirichlet boundary conditions. The method employed in this paper is based on the Leray–Schauder topological degree theory. However, verifying the conditions under which such a theory applies is more involved due to the presence of the singularity. The system can be regarded as a possible model of the interactions of two biological species sharing the same isolated territory, and our results give conditions that ensure the coexistence of the two species.

Nontrivial, nonnegative periodic solutions of a system of singular-degenerate parabolic equations with nonlocal terms

PAPINI, Duccio
2015

Abstract

We study the existence of nontrivial, nonnegative periodic solutions for systems of singular-degenerate parabolic equations with nonlocal terms and satisfying Dirichlet boundary conditions. The method employed in this paper is based on the Leray–Schauder topological degree theory. However, verifying the conditions under which such a theory applies is more involved due to the presence of the singularity. The system can be regarded as a possible model of the interactions of two biological species sharing the same isolated territory, and our results give conditions that ensure the coexistence of the two species.
File in questo prodotto:
File Dimensione Formato  
FraMuNiPa_CCM_2015_Published.pdf

non disponibili

Descrizione: Versione Editoriale dell'articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 580.28 kB
Formato Adobe PDF
580.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
FraMuNiPa_postprint.pdf

embargo fino al 01/01/2017

Descrizione: Versione accettata dell'articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 447.76 kB
Formato Adobe PDF
447.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/1070064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact