We study the existence of nontrivial, nonnegative periodic solutions for systems of singular-degenerate parabolic equations with nonlocal terms and satisfying Dirichlet boundary conditions. The method employed in this paper is based on the Leray–Schauder topological degree theory. However, verifying the conditions under which such a theory applies is more involved due to the presence of the singularity. The system can be regarded as a possible model of the interactions of two biological species sharing the same isolated territory, and our results give conditions that ensure the coexistence of the two species.
Titolo: | Nontrivial, nonnegative periodic solutions of a system of singular-degenerate parabolic equations with nonlocal terms |
Autori: | |
Data di pubblicazione: | 2015 |
Rivista: | |
Abstract: | We study the existence of nontrivial, nonnegative periodic solutions for systems of singular-degenerate parabolic equations with nonlocal terms and satisfying Dirichlet boundary conditions. The method employed in this paper is based on the Leray–Schauder topological degree theory. However, verifying the conditions under which such a theory applies is more involved due to the presence of the singularity. The system can be regarded as a possible model of the interactions of two biological species sharing the same isolated territory, and our results give conditions that ensure the coexistence of the two species. |
Handle: | http://hdl.handle.net/11390/1070064 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
FraMuNiPa_CCM_final.pdf | Documento in Post-print | ![]() | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.