Little is known about the neural correlates of delusional infestation (DI), the delusional belief to be infested with pathogens. So far, evidence comes mainly from case reports and case series. We investigated brain morphology in 16 DI patients and 16 healthy controls using structural magnetic resonance imaging and a multivariate data analysis technique, i.e. source-based morphometry (SBM). In addition, we explored differences in brain structure in patient subgroups based on disease aetiology. SBM revealed two patterns exhibiting significantly (p < 0.05, Bonferroni-corrected) lower grey and higher white matter volume in DI patients compared to controls. Lower grey matter volume was found in medial prefrontal cortex, anterior cingulate cortex, medial temporal lobe structures (parahippocampus and hippocampus), sensorimotor cortices, bilateral insula and thalamus and inferior parietal regions. Higher white matter volume was found in medial and middle frontal and temporal cortices, left insula and lentiform nucleus. Grey matter volume was abnormal in both "psychiatric" (primary DI and DI associated with an affective disorder) and "organic" DI (DI due to a medical condition). In contrast, aberrant white matter volume was only confirmed for the "organic" DI patient subgroup. These results suggest prefrontal, temporal, parietal, insular, thalamic and striatal dysfunction underlying DI. Moreover, the data suggest that aetiologically distinct presentations of DI share similar patterns of abnormal grey matter volume, whereas aberrant white matter volume appears to be restricted to organic cases
Source-based morphometry reveals distinct patterns of aberrant brain volume in delusional infestation
SAMBATARO, Fabio;
2014-01-01
Abstract
Little is known about the neural correlates of delusional infestation (DI), the delusional belief to be infested with pathogens. So far, evidence comes mainly from case reports and case series. We investigated brain morphology in 16 DI patients and 16 healthy controls using structural magnetic resonance imaging and a multivariate data analysis technique, i.e. source-based morphometry (SBM). In addition, we explored differences in brain structure in patient subgroups based on disease aetiology. SBM revealed two patterns exhibiting significantly (p < 0.05, Bonferroni-corrected) lower grey and higher white matter volume in DI patients compared to controls. Lower grey matter volume was found in medial prefrontal cortex, anterior cingulate cortex, medial temporal lobe structures (parahippocampus and hippocampus), sensorimotor cortices, bilateral insula and thalamus and inferior parietal regions. Higher white matter volume was found in medial and middle frontal and temporal cortices, left insula and lentiform nucleus. Grey matter volume was abnormal in both "psychiatric" (primary DI and DI associated with an affective disorder) and "organic" DI (DI due to a medical condition). In contrast, aberrant white matter volume was only confirmed for the "organic" DI patient subgroup. These results suggest prefrontal, temporal, parietal, insular, thalamic and striatal dysfunction underlying DI. Moreover, the data suggest that aetiologically distinct presentations of DI share similar patterns of abnormal grey matter volume, whereas aberrant white matter volume appears to be restricted to organic casesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.