We consider a simple nonlinear hyperbolic system modeling the flow of an inviscid fluid. The model includes as state variable the mass density fraction of the vapor in the fluid, and then, phase transitions can be taken into consideration; moreover, phase interfaces are contact discontinuities for the system. We focus on the special case of initial data consisting of two different phases separated by an interface. We find explicit bounds on the (possibly large) initial data in order that weak entropic solutions exist for all times. The proof exploits a carefully tailored version of the front-tracking scheme.

Global weak solutions for a model of two-phase flow with a single interface

BAITI, Paolo;DAL SANTO, Edda
2015

Abstract

We consider a simple nonlinear hyperbolic system modeling the flow of an inviscid fluid. The model includes as state variable the mass density fraction of the vapor in the fluid, and then, phase transitions can be taken into consideration; moreover, phase interfaces are contact discontinuities for the system. We focus on the special case of initial data consisting of two different phases separated by an interface. We find explicit bounds on the (possibly large) initial data in order that weak entropic solutions exist for all times. The proof exploits a carefully tailored version of the front-tracking scheme.
File in questo prodotto:
File Dimensione Formato  
ABCD_JEE.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
singola_onda_ABCD.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 497.57 kB
Formato Adobe PDF
497.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/1072020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact