We develop and study stability properties of a hybrid approximation of functionals of the Bates jump model with stochastic interest rate that uses a tree method in the direction of the volatility and the interest rate and a finite-difference approach in order to handle the underlying asset price process. We also propose hybrid simulations for the model, following a binomial tree in the direction of both the volatility and the interest rate, and a space-continuous approximation for the underlying asset price process coming from a Euler-Maruyama type scheme. We test our numerical schemes by computing European and American option prices.
Numerical stability of a hybrid method for pricing options.
Antonino Zanette
2019-01-01
Abstract
We develop and study stability properties of a hybrid approximation of functionals of the Bates jump model with stochastic interest rate that uses a tree method in the direction of the volatility and the interest rate and a finite-difference approach in order to handle the underlying asset price process. We also propose hybrid simulations for the model, following a binomial tree in the direction of both the volatility and the interest rate, and a space-continuous approximation for the underlying asset price process coming from a Euler-Maruyama type scheme. We test our numerical schemes by computing European and American option prices.File | Dimensione | Formato | |
---|---|---|---|
ijtaf19.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.