Surface modification is one of the methods for improving the performance of medical implants inbiological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 Vsubstrates by dip-coating method in order to obtain an inorganic—organic hybrid coating (MBG-PCL).Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 m. Glass andpolymer phases were detected in the coating along with the presence of biologically potent elementscerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samplesin simulated body fluid (SBF) for up to 30 days at 37◦C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In thisway, an attempt was made to develop a new biomaterial with improved in vitro bioactive response dueto bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biologicalproperties of cerium, gallium and zinc.
Cerium, gallium and zinc containing mesoporous bioactive glasscoating deposited on titanium alloy
ANDREATTA, Francesco;FURLANI, Erika;MARIN, Elia;MASCHIO, Stefano;FEDRIZZI, Lorenzo
2016-01-01
Abstract
Surface modification is one of the methods for improving the performance of medical implants inbiological environment. In this study, cerium, gallium and zinc substituted 80%SiO2-15%CaO-5%P2O5mesoporous bioactive glass (MBG) in combination with polycaprolactone (PCL) were coated over Ti6Al4 Vsubstrates by dip-coating method in order to obtain an inorganic—organic hybrid coating (MBG-PCL).Structural characterization was performed using XRD, nitrogen adsorption, SEM-EDXS, FTIR. The MBG-PCL coating uniformly covered the substrate with the thickness found to be more than 1 m. Glass andpolymer phases were detected in the coating along with the presence of biologically potent elementscerium, gallium and zinc. In addition, in vitro bioactivity was investigated by soaking the coated samplesin simulated body fluid (SBF) for up to 30 days at 37◦C. The apatite-like layer was monitored by FTIR, SEM-EDXS and ICP measurements and it formed in all the samples within 15 days except zinc samples. In thisway, an attempt was made to develop a new biomaterial with improved in vitro bioactive response dueto bioactive glass coating and good mechanical strength of Ti6Al4 V alloy along with inherent biologicalproperties of cerium, gallium and zinc.File | Dimensione | Formato | |
---|---|---|---|
Article APSUSC-Shruti.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.