This paper introduces a novel method for performing motion--stereo, based on dynamic integration of depth (or its proxy) measures obtained by pairwise stereo matching of video frames. The focus is on the data fusion issue raised by the motion--stereo approach, which is solved within a Kalman filtering framework. Integration occurs along the temporal and spatial dimension, so that the final measure for a pixel results from the combination of measures of the same pixel in time and whose of its neighbors. The method has been validated on both synthetic and natural images, using the simplest stereo matching strategy and a range of different confidence measures, and has been compared to baseline and optimal strategies.
A data-fusion approach to motion-stereo
MALAPELLE, Francesco;FUSIELLO, Andrea;
2016-01-01
Abstract
This paper introduces a novel method for performing motion--stereo, based on dynamic integration of depth (or its proxy) measures obtained by pairwise stereo matching of video frames. The focus is on the data fusion issue raised by the motion--stereo approach, which is solved within a Kalman filtering framework. Integration occurs along the temporal and spatial dimension, so that the final measure for a pixel results from the combination of measures of the same pixel in time and whose of its neighbors. The method has been validated on both synthetic and natural images, using the simplest stereo matching strategy and a range of different confidence measures, and has been compared to baseline and optimal strategies.File | Dimensione | Formato | |
---|---|---|---|
spic16 copia.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.