We prove an algebraic and a topological decomposition theorem for complete pseudo-D-lattices (i.e. lattice-ordered pseudo-effect algebras). As a consequence, we obtain a Hammer–Sobczyk type decomposition theorem for group-valued modular measures defined on pseudo-D-lattices and compactness of the range of every (Formula presented.)-valued σ-additive modular measure on a σ-complete pseudo-D-lattice. © 2015 Springer Science+Business Media Dordrecht

Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem

BARBIERI, Giuseppina Gerarda;Weber, H.
2016

Abstract

We prove an algebraic and a topological decomposition theorem for complete pseudo-D-lattices (i.e. lattice-ordered pseudo-effect algebras). As a consequence, we obtain a Hammer–Sobczyk type decomposition theorem for group-valued modular measures defined on pseudo-D-lattices and compactness of the range of every (Formula presented.)-valued σ-additive modular measure on a σ-complete pseudo-D-lattice. © 2015 Springer Science+Business Media Dordrecht
File in questo prodotto:
File Dimensione Formato  
pinab2015.pdf

non disponibili

Licenza: Non pubblico
Dimensione 332.26 kB
Formato Adobe PDF
332.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/1086221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact