We prove an algebraic and a topological decomposition theorem for complete pseudo-D-lattices (i.e. lattice-ordered pseudo-effect algebras). As a consequence, we obtain a Hammer–Sobczyk type decomposition theorem for group-valued modular measures defined on pseudo-D-lattices and compactness of the range of every (Formula presented.)-valued σ-additive modular measure on a σ-complete pseudo-D-lattice. © 2015 Springer Science+Business Media Dordrecht
Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem
BARBIERI, Giuseppina Gerarda;Weber, H.
2016-01-01
Abstract
We prove an algebraic and a topological decomposition theorem for complete pseudo-D-lattices (i.e. lattice-ordered pseudo-effect algebras). As a consequence, we obtain a Hammer–Sobczyk type decomposition theorem for group-valued modular measures defined on pseudo-D-lattices and compactness of the range of every (Formula presented.)-valued σ-additive modular measure on a σ-complete pseudo-D-lattice. © 2015 Springer Science+Business Media DordrechtFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
pinab2015.pdf
non disponibili
Licenza:
Non pubblico
Dimensione
332.26 kB
Formato
Adobe PDF
|
332.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.