We prove an algebraic and a topological decomposition theorem for complete pseudo-D-lattices (i.e. lattice-ordered pseudo-effect algebras). As a consequence, we obtain a Hammer–Sobczyk type decomposition theorem for group-valued modular measures defined on pseudo-D-lattices and compactness of the range of every (Formula presented.)-valued σ-additive modular measure on a σ-complete pseudo-D-lattice. © 2015 Springer Science+Business Media Dordrecht
Titolo: | Decomposition of Pseudo-effect Algebras and the Hammer–Sobczyk Theorem |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | We prove an algebraic and a topological decomposition theorem for complete pseudo-D-lattices (i.e. lattice-ordered pseudo-effect algebras). As a consequence, we obtain a Hammer–Sobczyk type decomposition theorem for group-valued modular measures defined on pseudo-D-lattices and compactness of the range of every (Formula presented.)-valued σ-additive modular measure on a σ-complete pseudo-D-lattice. © 2015 Springer Science+Business Media Dordrecht |
Handle: | http://hdl.handle.net/11390/1086221 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
pinab2015.pdf | N/A | Non pubblico | Accesso ristretto Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.