he primary effect of using a reduced number of classifiers is a reduction in the computational requirements during learning and classification time. In addition to this obvious result, research shows that the fusion of all available classifiers is not a guarantee of best performance but good results on the average. The much researched issue of whether it is more convenient to fuse or to select has become even more of interest in recent years with the development of the Online Boosting theory, where a limited set of classifiers is continuously updated as new inputs are observed and classifications performed. The concept of online classification has recently received significant interest in the computer vision community. Classifiers can be trained on the visual features of a target, casting the tracking problem into a binary classification one: distinguishing the target from the background. Here we discuss how to optimize the performance of a classifier ensemble employed for target tracking in video sequences. In particular, we propose the F-score measure as a novel means to select the members of the ensemble in a dynamic fashion. For each frame, the ensemble is built as a subset of a larger pool of classifiers selecting its members according to their F-score. We observed an overall increase in classification accuracy and a general tendency in redundancy reduction among the members of an f-score optimized ensemble. We carried out our experiments both on benchmark binary datasets and standard video sequences. © 2015 Elsevier B.V. All rights reserved.
Diversity-aware classifier ensemble selection via f-score
SNIDARO, Lauro
Secondo
;FORESTI, Gian LucaUltimo
2016-01-01
Abstract
he primary effect of using a reduced number of classifiers is a reduction in the computational requirements during learning and classification time. In addition to this obvious result, research shows that the fusion of all available classifiers is not a guarantee of best performance but good results on the average. The much researched issue of whether it is more convenient to fuse or to select has become even more of interest in recent years with the development of the Online Boosting theory, where a limited set of classifiers is continuously updated as new inputs are observed and classifications performed. The concept of online classification has recently received significant interest in the computer vision community. Classifiers can be trained on the visual features of a target, casting the tracking problem into a binary classification one: distinguishing the target from the background. Here we discuss how to optimize the performance of a classifier ensemble employed for target tracking in video sequences. In particular, we propose the F-score measure as a novel means to select the members of the ensemble in a dynamic fashion. For each frame, the ensemble is built as a subset of a larger pool of classifiers selecting its members according to their F-score. We observed an overall increase in classification accuracy and a general tendency in redundancy reduction among the members of an f-score optimized ensemble. We carried out our experiments both on benchmark binary datasets and standard video sequences. © 2015 Elsevier B.V. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
F-score R1.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
10.45 MB
Formato
Adobe PDF
|
10.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Diversity-aware classifier ensemble selection via f-score.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
4.89 MB
Formato
Adobe PDF
|
4.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.