For any integer n ≥ 2, let R_0(n + 1) be the class of 0-semihypergroups H of size n + 1 such that {y} ⊆ xy ⊆ {0, y} for all x, y ∈ H - {0}, all subsemihypergroups K ⊆ H are 0-simple and, when |K| ≥ 3, the fundamental relation β_K is not transitive. We determine a transversal of isomorphism classes of semihypergroups in R0(n + 1) and we prove that its cardinality is the (n + 1)-th term of sequence A000070 in [21], namely, ∑ _{k=0}^n p(k), where p(k) denotes the number of non-increasing partitions of integer k.
Titolo: | A family of 0-simple semihypergroups related to sequence A000070 |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Abstract: | For any integer n ≥ 2, let R_0(n + 1) be the class of 0-semihypergroups H of size n + 1 such that {y} ⊆ xy ⊆ {0, y} for all x, y ∈ H - {0}, all subsemihypergroups K ⊆ H are 0-simple and, when |K| ≥ 3, the fundamental relation β_K is not transitive. We determine a transversal of isomorphism classes of semihypergroups in R0(n + 1) and we prove that its cardinality is the (n + 1)-th term of sequence A000070 in [21], namely, ∑ _{k=0}^n p(k), where p(k) denotes the number of non-increasing partitions of integer k. |
Handle: | http://hdl.handle.net/11390/1089918 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
(2016)A Family of 0-Simple Semihypergroups Related to Sequence A000070.pdf | Articolo su rivista internazionale | Versione Editoriale (PDF) | Non pubblico | Accesso ristretto Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.