For any integer n ≥ 2, let R_0(n + 1) be the class of 0-semihypergroups H of size n + 1 such that {y} ⊆ xy ⊆ {0, y} for all x, y ∈ H - {0}, all subsemihypergroups K ⊆ H are 0-simple and, when |K| ≥ 3, the fundamental relation β_K is not transitive. We determine a transversal of isomorphism classes of semihypergroups in R0(n + 1) and we prove that its cardinality is the (n + 1)-th term of sequence A000070 in [21], namely, ∑ _{k=0}^n p(k), where p(k) denotes the number of non-increasing partitions of integer k.
A family of 0-simple semihypergroups related to sequence A000070
FASINO, Dario;FRENI, Domenico;
2016-01-01
Abstract
For any integer n ≥ 2, let R_0(n + 1) be the class of 0-semihypergroups H of size n + 1 such that {y} ⊆ xy ⊆ {0, y} for all x, y ∈ H - {0}, all subsemihypergroups K ⊆ H are 0-simple and, when |K| ≥ 3, the fundamental relation β_K is not transitive. We determine a transversal of isomorphism classes of semihypergroups in R0(n + 1) and we prove that its cardinality is the (n + 1)-th term of sequence A000070 in [21], namely, ∑ _{k=0}^n p(k), where p(k) denotes the number of non-increasing partitions of integer k.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
(2016)A Family of 0-Simple Semihypergroups Related to Sequence A000070.pdf
non disponibili
Descrizione: Articolo su rivista internazionale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
143.89 kB
Formato
Adobe PDF
|
143.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.