We study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.
Some properties of the growth and of the algebraic entropy of group endomorphisms
GIORDANO BRUNO, Anna
;
2016-01-01
Abstract
We study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IRIS-growth.pdf
Open Access dal 12/04/2017
Descrizione: Articolo principale, Accesso Aperto MIUR
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
243.92 kB
Formato
Adobe PDF
|
243.92 kB | Adobe PDF | Visualizza/Apri |
schedaprogetto.pdf
accesso aperto
Descrizione: Scheda di progetto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
46.77 kB
Formato
Adobe PDF
|
46.77 kB | Adobe PDF | Visualizza/Apri |
[Journal of Group Theory] Some properties of the growth and of the algebraic entropy of group endomorphisms.pdf
non disponibili
Descrizione: Articolo principale, versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
237.65 kB
Formato
Adobe PDF
|
237.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.