Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation −x¨+(1+ε−1A(t))G′(x)=0, where A(t) is a nonnegative T-periodic function and ε>0 is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima x0 and x1 of G(x). Such solutions stay close to x0 or x1 in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case x0=0 and x1=1.
Complex Dynamics in a ODE Model Related to Phase Transition
PAPINI, Duccio
;ZANOLIN, Fabio
2017-01-01
Abstract
Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation −x¨+(1+ε−1A(t))G′(x)=0, where A(t) is a nonnegative T-periodic function and ε>0 is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima x0 and x1 of G(x). Such solutions stay close to x0 or x1 in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case x0=0 and x1=1.File | Dimensione | Formato | |
---|---|---|---|
PaZa_JDDE2017.pdf
non disponibili
Descrizione: Versione Editoriale dell'articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
594.5 kB
Formato
Adobe PDF
|
594.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
PaZa_JDDE_postprint.pdf
Open Access dal 07/01/2017
Descrizione: Versione accettata dell'articolo
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
384.34 kB
Formato
Adobe PDF
|
384.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.