Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation −x¨+(1+ε−1A(t))G′(x)=0, where A(t) is a nonnegative T-periodic function and ε>0 is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima x0 and x1 of G(x). Such solutions stay close to x0 or x1 in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case x0=0 and x1=1.

Complex Dynamics in a ODE Model Related to Phase Transition

PAPINI, Duccio
;
ZANOLIN, Fabio
2017-01-01

Abstract

Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation −x¨+(1+ε−1A(t))G′(x)=0, where A(t) is a nonnegative T-periodic function and ε>0 is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima x0 and x1 of G(x). Such solutions stay close to x0 or x1 in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case x0=0 and x1=1.
File in questo prodotto:
File Dimensione Formato  
PaZa_JDDE2017.pdf

non disponibili

Descrizione: Versione Editoriale dell'articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 594.5 kB
Formato Adobe PDF
594.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PaZa_JDDE_postprint.pdf

Open Access dal 07/01/2017

Descrizione: Versione accettata dell'articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 384.34 kB
Formato Adobe PDF
384.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1091946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact