A search for the pair production of heavy leptons (N0,L±) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels N0→W±l (=e,μ,τ) and L±→W±ν (ν=νe,νμ,ντ) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of 20.3 fb-1 of pp collisions at s=8 TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair production is observed. Heavy leptons with masses below 325-540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered. © 2015 CERN. © 2015 CERN, for the ATLAS Collaboration. Published by the American Physical Society under the terms of the »http://creativecommons.org/licenses/by/3.0/» Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Search for type-III seesaw heavy leptons in pp collisions at s =8 TeV with the ATLAS detector
BRAZZALE, Simone Federico;COBAL, Marina;GIORDANI, Mario;Monzani, S.;
2015-01-01
Abstract
A search for the pair production of heavy leptons (N0,L±) predicted by the type-III seesaw theory formulated to explain the origin of small neutrino masses is presented. The decay channels N0→W±l (=e,μ,τ) and L±→W±ν (ν=νe,νμ,ντ) are considered. The analysis is performed using the final state that contains two leptons (electrons or muons), two jets from a hadronically decaying W boson and large missing transverse momentum. The data used in the measurement correspond to an integrated luminosity of 20.3 fb-1 of pp collisions at s=8 TeV collected by the ATLAS detector at the LHC. No evidence of heavy lepton pair production is observed. Heavy leptons with masses below 325-540 GeV are excluded at the 95% confidence level, depending on the theoretical scenario considered. © 2015 CERN. © 2015 CERN, for the ATLAS Collaboration. Published by the American Physical Society under the terms of the »http://creativecommons.org/licenses/by/3.0/» Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.