Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability on the distribution of solutal concentration in fluid saturated porous medium. Our computational analyses span over few decades of Rayleigh-Darcy number and confirm the linear scaling of Nusselt number that was previously found in the literature. In addition, we find that anisotropic permeability gamma < 1, i.e., with vertical permeability smaller than horizontal permeability, effectively increases the Nusselt number compared with isotropic conditions. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. Finally, we use our data computed for the two-sided configuration (i.e., Dirichlet conditions on upper and lower boundaries) to examine the time evolution of solutal dynamics in the one-sided configuration, and we demonstrate that the finite-time (short-term) amount of CO2 that can be dissolved in anisotropic sedimentary rocks is much larger than in isotropic rocks. Published by AIP Publishing.

Influence of anisotropic permeability on convection in porous media: Implications for geological Co2 sequestration

DE PAOLI, Marco;ZONTA, Francesco;SOLDATI, Alfredo
2016-01-01

Abstract

Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability on the distribution of solutal concentration in fluid saturated porous medium. Our computational analyses span over few decades of Rayleigh-Darcy number and confirm the linear scaling of Nusselt number that was previously found in the literature. In addition, we find that anisotropic permeability gamma < 1, i.e., with vertical permeability smaller than horizontal permeability, effectively increases the Nusselt number compared with isotropic conditions. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. Finally, we use our data computed for the two-sided configuration (i.e., Dirichlet conditions on upper and lower boundaries) to examine the time evolution of solutal dynamics in the one-sided configuration, and we demonstrate that the finite-time (short-term) amount of CO2 that can be dissolved in anisotropic sedimentary rocks is much larger than in isotropic rocks. Published by AIP Publishing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1100484
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 49
social impact