In this work we propose an adaptive version of the recently introduced Mixed High-Order method and showcase its performance on a comprehensive set of academic and industrial problems in computational electromagnetism. The latter include, in particular, the numerical modeling of comb-drive and MEMS devices. Mesh adaptation is driven by newly derived, residual-based error estimators. The resulting method has several advantageous features: It supports fairly general meshes, it enables arbitrary approximation orders, and has a moderate computational cost thanks to hybridization and static condensation. The a posteriori-driven mesh refinement is shown to significantly enhance the performance on problems featuring singular solutions, allowing to fully exploit the high-order of approximation. © 2016 Elsevier Inc.

An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics

SPECOGNA, Ruben
2016-01-01

Abstract

In this work we propose an adaptive version of the recently introduced Mixed High-Order method and showcase its performance on a comprehensive set of academic and industrial problems in computational electromagnetism. The latter include, in particular, the numerical modeling of comb-drive and MEMS devices. Mesh adaptation is driven by newly derived, residual-based error estimators. The resulting method has several advantageous features: It supports fairly general meshes, it enables arbitrary approximation orders, and has a moderate computational cost thanks to hybridization and static condensation. The a posteriori-driven mesh refinement is shown to significantly enhance the performance on problems featuring singular solutions, allowing to fully exploit the high-order of approximation. © 2016 Elsevier Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1101320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact