The flow field in a rough microchannel is numerically analyzed using a hybrid solver, dynamically coupling kinetic and Navier–Stokes solutions computed in rarefied and continuum subareas of the flow field, respectively, and a full Navier–Stokes solver. The rough surface is configured with triangular roughness elements, with a maximum relative roughness of 5 % of the channel height. The effects of Mach number, Knudsen number (or Reynolds number) and roughness height are investigated and discussed in terms of Poiseuille number and mass flow rate. Discrepancies between full Navier–Stokes and hybrid solutions are analyzed, assessing the range of validity of Navier–Stokes equations provided with first-order slip boundary conditions for modeling gas flow along a rough surface. Results indicate that the roughness increases Poiseuille number and decreases mass flux in comparison with those for the smooth microchannel. Increasing rarefaction results in further enhancement of roughness effect. At the same time, the compressibility effect is more noticeable than the roughness one, although the compressibility effect is alleviated by increase in the rarefaction. It was found that, although the Navier–Stokes solution of the flow in a smooth channel is accurate up to Kn = 0.1, when relative roughness height is higher than 1.25 % significant errors already appear at Kn = 0.02.

Numerical simulation of gas flow in rough microchannels: hybrid kinetic–continuum approach versus Navier–Stokes

CROCE, Giulio
2016-01-01

Abstract

The flow field in a rough microchannel is numerically analyzed using a hybrid solver, dynamically coupling kinetic and Navier–Stokes solutions computed in rarefied and continuum subareas of the flow field, respectively, and a full Navier–Stokes solver. The rough surface is configured with triangular roughness elements, with a maximum relative roughness of 5 % of the channel height. The effects of Mach number, Knudsen number (or Reynolds number) and roughness height are investigated and discussed in terms of Poiseuille number and mass flow rate. Discrepancies between full Navier–Stokes and hybrid solutions are analyzed, assessing the range of validity of Navier–Stokes equations provided with first-order slip boundary conditions for modeling gas flow along a rough surface. Results indicate that the roughness increases Poiseuille number and decreases mass flux in comparison with those for the smooth microchannel. Increasing rarefaction results in further enhancement of roughness effect. At the same time, the compressibility effect is more noticeable than the roughness one, although the compressibility effect is alleviated by increase in the rarefaction. It was found that, although the Navier–Stokes solution of the flow in a smooth channel is accurate up to Kn = 0.1, when relative roughness height is higher than 1.25 % significant errors already appear at Kn = 0.02.
File in questo prodotto:
File Dimensione Formato  
MiNa_2016.pdf

non disponibili

Descrizione: Articolo integrale
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 916.84 kB
Formato Adobe PDF
916.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1101438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact