This study investigates the activity of transition and alkaline-earth metal-doped catalysts supported on ceria or zirconia for the NOx-assisted oxidation of diesel particulate. A series of Cu- and Fe-impregnated catalysts over CeO2 and ZrO2 supportswere prepared by incipientwetness impregnation and characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR) experiments while their catalytic activity was investigated in NOx-assisted reaction by means of temperature programmed oxidation experiments (TPO). Higher activity was achieved by copper modified catalysts; the addition of Sr positively affected the performance of the materials, suggesting a synergic effect between transition metals and alkaline-earth metal. The role of copper is correlated to the oxidation of NO to NO2, while strontium seems to be mainly involved in the storage of NOx species.

The effect of sr addition in cu- and fe-modified CeO2 and ZrO2 soot combustion catalysts

ANEGGI, Eleonora
;
TROVARELLI, Alessandro
2017-01-01

Abstract

This study investigates the activity of transition and alkaline-earth metal-doped catalysts supported on ceria or zirconia for the NOx-assisted oxidation of diesel particulate. A series of Cu- and Fe-impregnated catalysts over CeO2 and ZrO2 supportswere prepared by incipientwetness impregnation and characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR) experiments while their catalytic activity was investigated in NOx-assisted reaction by means of temperature programmed oxidation experiments (TPO). Higher activity was achieved by copper modified catalysts; the addition of Sr positively affected the performance of the materials, suggesting a synergic effect between transition metals and alkaline-earth metal. The role of copper is correlated to the oxidation of NO to NO2, while strontium seems to be mainly involved in the storage of NOx species.
File in questo prodotto:
File Dimensione Formato  
catalysts-2017.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1101642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact