Existing approaches for person re-identification are mainly based on creating distinctive representations or on learning optimal metrics. The achieved results are then provided in the form of a list of ranked matching persons. It often happens that the true match is not ranked first but it is in the first positions. This is mostly due to the visual ambiguities shared between the true match and other "similar" persons. At the current state, there is a lack of a study of such visual ambiguities which limit the re-identification performance within the first ranks. We believe that an analysis of the similar appearances of the first ranks can be helpful in detecting, hence removing, such visual ambiguities. We propose to achieve such a goal by introducing an unsupervised post-ranking framework. Once the initial ranking is available, content and context sets are extracted. Then, these are exploited to remove the visual ambiguities and to obtain the discriminant feature space which is finally exploited to compute the new ranking. An in-depth analysis of the performance achieved on three public benchmark data sets support our believes. For every data set, the proposed method remarkably improves the first ranks results and outperforms the state-of-the-art approaches.
Discriminant Context Information Analysis for Post-Ranking Person Re-Identification
MARTINEL, Niki;FORESTI, Gian Luca;MICHELONI, Christian
2017-01-01
Abstract
Existing approaches for person re-identification are mainly based on creating distinctive representations or on learning optimal metrics. The achieved results are then provided in the form of a list of ranked matching persons. It often happens that the true match is not ranked first but it is in the first positions. This is mostly due to the visual ambiguities shared between the true match and other "similar" persons. At the current state, there is a lack of a study of such visual ambiguities which limit the re-identification performance within the first ranks. We believe that an analysis of the similar appearances of the first ranks can be helpful in detecting, hence removing, such visual ambiguities. We propose to achieve such a goal by introducing an unsupervised post-ranking framework. Once the initial ranking is available, content and context sets are extracted. Then, these are exploited to remove the visual ambiguities and to obtain the discriminant feature space which is finally exploited to compute the new ranking. An in-depth analysis of the performance achieved on three public benchmark data sets support our believes. For every data set, the proposed method remarkably improves the first ranks results and outperforms the state-of-the-art approaches.File | Dimensione | Formato | |
---|---|---|---|
paper.pdf
non disponibili
Descrizione: Articolo Principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
6.07 MB
Formato
Adobe PDF
|
6.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
foresti4.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
4.22 MB
Formato
Adobe PDF
|
4.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.